Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway.
نویسندگان
چکیده
Allicin, the main biologically active compound derived from garlic, exerts a broad spectrum of pharmacological activities and is considered to have therapeutic potential in many neurological disorders. Using an in vitro spinal cord injury model induced by glutamate treatment, we sought to investigate the neuroprotective effects of allicin in primary cultured spinal cord neurons. We found that allicin treatment significantly attenuated glutamate-induced lactate dehydrogenase (LDH) release, loss of cell viability and apoptotic neuronal death. This protection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, reduced lipid peroxidation and preservation of antioxidant enzyme activities. The results of western blot analysis showed that allicin decreased the expression of inducible nitric oxide synthase (iNOS), but had no effects on the expression of neuronal NOS (nNOS) following glutamate exposure. Moreover, allicin treatment significantly increased the expression of heat shock protein 70 (HSP70) at both mRNA and protein levels. Knockdown of HSP70 by specific targeted small interfere RNA (siRNA) not only mitigated allicin-induced protective activity, but also partially nullified its effects on the regulation of iNOS. Collectively, these data demonstrate that allicin treatment may be an effective therapeutic strategy for spinal cord injury, and that the potential underlying mechanism involves HSP70/iNOS pathway-mediated inhibition of oxidative stress.
منابع مشابه
Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice
Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v‑akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult...
متن کاملFerulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity.
Alzheimer's disease (AD) is neuropathologically characterized by depositions of extracellular amyloid and intracellular neurofibrillary tangles, associated with loss of neurons in the brain. Amyloid beta-peptide (Abeta) is the major component of senile plaques and is considered to have a causal role in the development and progress of AD. Several lines of evidence suggest that enhanced oxidative...
متن کاملAllicin prevents H2O2-induced apoptosis of HUVECs by inhibiting an oxidative stress pathway
BACKGROUND Allicin, a primary ingredient of garlic, has been proposed to possess cardioprotective properties, which are commonly mediated by improved endothelial function. METHODS To investigate the effect and mechanism of allicin on the apoptosis of human umbilical vein endothelial cells (HUVECs), we used Propidium iodide (PI) staining and Annexin V/ PI staining assays to establish a model o...
متن کاملInteraction between HSP 70 and iNOS in skeletal muscle injury and repair
Muscle injuries are frequently occurred in various sports. The biological process and mechanism of muscle repair after injury are well known through the many studies. This study aimed at presenting heat shock protein and nitric oxide synthase are to respond to muscle damage and repair. This section discusses the results obtained through many articles. Heat shock proteins (HSPs) are considered t...
متن کاملA Novel Acylaminoimidazole Derivative, WN1316, Alleviates Disease Progression via Suppression of Glial Inflammation in ALS Mouse Model
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron degenerative disease. Given that oxidative stress and resulting chronic neuronal inflammation are thought to be central pathogenic, anti-oxidative agents and modulators of neuronal inflammation could be potential therapies for ALS. We report here that the novel small molecular compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Food & function
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2015